Data Mining with Linguistic Thresholds
نویسندگان
چکیده
Data mining is the process of extracting desirable knowledge or interesting patterns from existing databases for specific purposes. In the past, the minimum supports and minimum confidences were set at numerical values. Linguistic minimum support and minimum confidence values are, however, more natural and understandable for human beings. This paper thus attempts to propose a new mining approach for extracting interesting weighted association rules from transactions, when the parameters needed in the mining process are given in linguistic terms. Items are also evaluated by managers as linguistic terms to reflect their importance, which are then transformed as fuzzy sets of weights. Fuzzy operations including fuzzy ranking are then used to find weighted large itemsets and association rules. 1712 Tzung-Pei Hong, Ming-Jer Chiang and Shyue-Liang Wang Mathematics Subject Classification: 62-07
منابع مشابه
Separation of Geochemical Anomalies Using Factor Analysis and Concentration-Number (C-N) Fractal Modeling Based on Stream Sediments Data in Esfordi 1:100000 Sheet, Central Iran
The aim of this study is separation of Fe2O3, TiO2 and V2O5 anomalies in Esfordi 1:100,000 sheet which is located in Bafq district, Central Iran. The analyzed elements of stream sediment samples taken in the area can be classified into 5 groups (factors) by factor analysis. The Concentration–Number (C-N) fractal model was used for delineation of the Fe2O3, TiO2 and V2O5 thresholds. According to...
متن کاملInvestigation of linear and non-linear estimation methods in highly-skewed gold distribution
The purpose of this work is to compare the linear and non-linear kriging methods in the mineral resource estimation of the Qolqoleh gold deposit in Saqqez, NW Iran. Considering the fact that the gold distribution is positively skewed and has a significant difference with a normal curve, a geostatistical estimation is complicated in these cases. Linear kriging, as a resource estimation method, c...
متن کاملMINING FUZZY TEMPORAL ITEMSETS WITHIN VARIOUS TIME INTERVALS IN QUANTITATIVE DATASETS
This research aims at proposing a new method for discovering frequent temporal itemsets in continuous subsets of a dataset with quantitative transactions. It is important to note that although these temporal itemsets may have relatively high textit{support} or occurrence within particular time intervals, they do not necessarily get similar textit{support} across the whole dataset, which makes i...
متن کاملMining Fuzzy Weighted Browsing Patterns from Time Duration and with Linguistic Thresholds
World-wide-web applications have grown very rapidly and have made a significant impact on computer systems. Among them, web browsing for useful information may be most commonly seen. Due to its tremendous amounts of use, efficient and effective web retrieval has become a very important research topic in this field. Techniques of web mining have thus been requested and developed to achieve this ...
متن کاملA New Algorithm for Optimization of Fuzzy Decision Tree in Data Mining
Decision-tree algorithms provide one of the most popular methodologies for symbolic knowledge acquisition. The resulting knowledge, a symbolic decision tree along with a simple inference mechanism, has been praised for comprehensibility. The most comprehensible decision trees have been designed for perfect symbolic data. Classical crisp decision trees (DT) are widely applied to classification t...
متن کامل